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KELVIN-HELMHOLTZ INSTABILITY IN AN ANISOTROPIC PLASMA
S. P. Talwar
Theoretical Division

Goddard Space Flight Center
Greenbelt, Maryland

Introduction
:igé purpose of the present paper is to investigate the Kelvin-Helmholtz
"
instability, arising due to a tangential discontinuity of velocities
between two streams of a homogenous, nondissipative, anisotropic plasmaf
This problem is of interest in a variety of astro- and geophysical
situations, e.g. the stability of the magnetospheric boundary, coronal
streamers moving through the solar wind. The instability of the magnetospheric
boundary, if ascertained, would help in understanding of the phencmens
of magnetic storms, aurorae and the formation of radiation belts. Again
the solar wind may possess a fine structure resulting in a tengential
,discontinuity of velocity between adjacent streams. The instability of
this fine structure would result in production of irregularities of
plasma properties and the magnetic field in the incoming solar wind and
this may be the cause of the irregularity in the direction and the magnitude
of the solar wind magnetic field vector as given by Explorer 10 and 12 and Tmp 1
measurements (Heppner, Ness et. al, 1963 and Cahill and Amazeen, 1963, Ness et,al,19;
Previous investigations on Kelvin-Helmholtz instability in hydro- o

magnetics were concerned with the instability due to a tangential dis-

continuity in velocities present in incompressible fluids (Chandrasekhar

1961), although the effects of compressibility has also been incorporated
recently (Fejer, 1964; Talwar, 1964; Parker, 1964; Sen, 1964). A general
result of these investigations is that the instability of the vortex sheet

is suppressed by a strong enough magnetic field. These investigatioms
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made use of collision-dominated, single fluid hydromagnetic equations
with scalar gas pressure approximation. The latter assumption is not
likely to hold true in dilute plasmas such as the coronal streamers and
the solar wind. TIn fact, the plasma pressure may be anisotropic due to
infrequent collisions, in particular having two scalar components, one
parallel and the other perpendicular to the local interplanetary magnetic
field. In this paper we shall make use of the modified single fluid
hydromagnetic equa:tioné as given by Chew, Goldberger, and Low (1956)
where the heat flow is neglected, and the independent components of
anisotropic pressure are determined by the two adiabatic equations of

state instead of the single equation of state of the ideal fluid theoryt?

The results obtained should, therefore, be applicable to situations
intermediate between those of weak collisions and strong collisions,
i.e. the situations in which collisions are not sufficiently strong to
keep the pressure a scalar but sufficiently strong to prevent the heat

flow and other transport processes.

Equations of the Problem

Consider a system of Cartesian axes with the Z-direction as vertical.
Suppose that a plane surface of discontinuity of tangential velocity
exists at the interface (Z=0) between the two semi-infinite regionms of
a single homogenous, non-dissipative plasma permeated with a uniform
magnetic field B0 along the x-direction. Iet Ul 3 U‘2 be the uniform
velocities along x-direction in the two regions Z < O, and 3 > O

respectively, so that there is no initial electric field in the medium.
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The initial steady state of the configuration requires

Vip=0 4 (1

for either region. Here p denctes the tensorial plasma pressure having
components p11 and P.L along and noﬁnal to the ambient magnetic field.
These components are constants, as follows from equation (1).

To investigate the stability of the initial state, we impart a
perturbation velocity u having components u, v, w in the x, y, z directions.

Iet the corresponding perturbations in other physical parameters be

%, 8p ,8p, % .

Assuming the perturbations to be of the first order of smallness
and of the form,
(Some function of Z). exp. Likx + nt] (2)

we write the linearized perturbation equatioms as,

g, (mrikl)n < _(v.ﬂ-;)x (5
§. (n+iklp)v = ’(V‘fﬂ)} N '.‘k4$_o Sa#
(%)
g (mrikU)w = - (985) - & (258, <¥3,) .
(n+ihU°)Sp = —puu .
(n+iRU,)3B = ikBu — B Pu

(7



(n+ikU,) S% - ikBo
(nrikl) 88, = kB w
’LkSB,L’\‘:DSBZ— =

Shi _ a8 _ 238

P P Bo
Sp 8Bx 8P
A

Using the relation

k—J r’fl"“‘—\—r_,_L&)—’f%J)amibvnn.-Bﬂ

) - T

18]

We can rewrite the equations (3) - (5) as,

o'f/t- w = Lkg’r” —-Qh) l’.L) :DBB?—

where we have put d for (n + ika).

(8)

(9)

(10)

(1)

(12)

(13)

(14)

(15)

(16)

With the help of equations (6) - (12) we can rewrite the equation

(16) as
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() Bor R [Fa- (50- V)] e

(17)
where we have written
* Bk 2 g2
= o AP
i" % oV anp (18)

It may be noted that the equation (15) yields a mode uncoupled with

the equations (14%) and (16), described by,
2 2 >
Nl = - ihUo + k [SII "SJ_ "VOJ (19)

which yields the usual 'Fire-hose' instability condition for a
uniform static anisotropic plasma.
The expression for V'E can be obtained from equation (14) using

the equations (6) - (12), and is written as,

\TATS (rk’-.,_g,\éS,"’) _ [,"\‘7—*_)2"(35”2 ~ S_,:‘)J:Dw, (20)

Thus the perturbation equation (17) for the vertical component W of

the velocity perturbation vector can be finally written as,

[ Giseksi) (s )_n‘sf} B (21)

- [«'&. K (sa- 8™ v:)] (W3 3Rsi ) w =0
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Boundary Conditions and Dispersion Relation

For a configuration of two semi-infinite streams slipping past each
other at the horizontal interface Z=0, the respective solutions vanishing

at Z = + @, of equation (21) are written as,

-

™Z
“’;(g):A,e (*-<°)
(22)
-mz
1“";~(z)—‘=Aa_:’}~ (K7°)

where m, (1=1, 2) supposed to be having positive real part, are given
by,
n'-" 2
L [rEeRs]| Te- (S-a0)
m. . k N (23)
| asi) (asinn) - ¥ o]

At the common interface we need to satisfy the following boundary con-
ditions:

(i) The normal camponent of veloeity is continuous, leading to,
: : P-X{
w; ~ 1kUS = w, -ikU, 4 - SE (2k)

where § denotes the small displacement of the interface. Using

(22) we get

A, - A Z= (25)

-
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(ii) The normal component of the magnetic field is zero in each
region. This requireﬁrent follows, as can be easily verified.
(1ii) The normal stress should be continuous across the interface.

This requires that,

¢ S @)

Sk, Sp, %[’geﬁ -58, J=o (26)

Maying use of equations (9), (10), (12), (14) and (25) in equation
(26), we obtain
z kR 2 2 4
m, (i 2Ksi) [(v°+zsj) (A2 r3ksn) R S_,_]

.o — (2)
(n:_,\.gt.s,',')[(vol,;.z S ) (’7"«,1'—?-3)*5'\) —k S.L]

The

Substituting for m), m from equation (23) and simplifying, we finally

obtain the dispersion relation in the form

z 't

' T T !
(\rag? iy 385 (Vo zsD ) (i

+K (45i-50-Ve )i-%nl (Varas®) - sf}*
-3 Sl’;_ Q/:—F 2 S..Ll) <S'T—_ SJ_‘L‘- v:)]:o( 28)

here

! ; U'—-U )
W= R Up = 55 = Planar veeed) (29)

& - -ik U,_—LU?)
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Teking U; = - Ué = U, the equation (28) reduces to,

53(453>%ﬁLv§)
=0 (30)

(\/02+ 2 Sﬁ )

-2 oo [ ueast (o5t ~av)-

The equation (30) determines the stability of the configuration.
For stability we require all roots UP of the aboveequafimto be real.
If sz is negative real, it corresponds to monotonic instability whereas

if U?g is complex, it leads to an overstable situation.

Discussion of Results

It follows from equation (30) that the discriminant is negative
leading to complex sz provided

2 .S_f < S ﬁ “+ Vol—‘}sul)
Jit S
U< sy (Vo 257) (51)

Alternatively we may argue that the configuration of two slipping
streams of an anisotropic plasma can show instability through overstability
(growing wave instability) only if the relative speed 2U is less than
F s
a certain critical value 2L , and the prevailing magnetic field
JBSU
is sufficlently strong as to satisfy the condition,
2. [
3 st s+ast)
t
(Gr2st) > —m5 o (32)
ST—1z25U

2 84
r U Ti%F’ there is no overstability possible and the con-
figuration is either stable or monotonically unstable, depending upon

the strength of the magnetic field. The conditions are written as:
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S_L(45|\+S,.L)

(\44—15‘;_)< [(U 35,,) J (unstable)

> SJ? (451!7_‘*‘ iy ) (stable)
);(Ut ash )+ Sﬁj (33)

It may be noted that the denominator on the right hand side in
equation (33) is always larger than the denominator in equation (32)
so that thg critical value of (V;-f—?iof) required for overstability toi
manifest is larger than the corresponding value for monotonic instability.
Thus we may summarize the conclusion by saying that as the relative speed
between the two streams of an anisotropic plasma is increased from a
non-zero low value, the configuration;stable, unstable (monoctonic or
overstable) depending upon the strength of the prevailing magnetic field,
shows no overstablllty for relative speeds beyond the critical wvalue

/)"5 . Thereafter the configuration will be stable or unstable according

to equation (33), for all modes of disturbance and the instability cannot
be suppressed completely for any relative streaming speed.

Figure 1 gives a plot of the critical value Vyagainst U (both measured
in units of sl) as defined by equations (32) and (33) for 6§ = 0.5,
1.0, 1.5 where & (= gi—") measures the anisotropy of pressure in the
medium. The curves a and b give the critical value for a transition
from overstable to stable regimes for 6 = 0.5 and 1.0 whereas the curves

c, and d (On different abscissae scale) demarcate stable-unstable regimes

for 6 = i, 5. For 6 = 0.5, the system is either stable or overstable
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even in the absence of magnetic field. It may be mentioned that the
conditions (32) and (33) depend substantially on the anisotropy in the
medium. We may conclude that the supersonic solar wind velocities past
the magnetosphere precludes the possibility of growing wave instability
unless the anisotropy is very large. The magnetospheric boundary
(more specially the tail, if open) may, however, suffer from monotonic
instability (ew;‘en though the anisotropy is not appreciable) in regions
and at times when the relative slippage velocity is low. It is quite
likely, although the observational information is not yet available,
that the coronal streamers may, at times, satisfy the requirement for
overstability or monotonic instability and thus produce some kind of

disorderly state in the solar wind.
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Abstract

The instability arising due to a tangential discontinuity of velocity
in an unbounded, anisotropic plasms subject to a uniform magnetic field
is investigated using Chew, Goldberger, and Low approximation. Formal
conditions of instability are written, and the bearing of the results on
the stability of the magnetospheric boundary, and the coronal streamers

" is discussed.
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